مشخصه سازی برخی گروههای ساده توسط گرافهای اول و ناجابجایی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده ریاضی و کامپیوتر خوانسار
- نویسنده فاطمه نعمت اللهی
- استاد راهنما علی اکبر محمدی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1390
چکیده
برای گروه متناهی g و زیر مجموعهx از g، گراف جا به جایی رویx به صورت (g)? نشان داده می شود که مجموعه رئوس آن است و دو رأس y?xوx به وسیله یک یال به هم مرتبط می شوند، هرگاه جابجاگر x وy همانی باشد.گراف متمم از گراف جا به جایی(g)? جایی که (x?g(g با (g)? نشان داده می شود .(g)? گراف نا جا به جایی از خوانده می شود. در این گراف مجموعه رئوس(v(g)=g(g است و(x,y?v(g با یک یال به هم مرتبط هستند، اگر و تنها اگرx,y]?1]. در این پایان نامه ابتدا برخی از خصوصیات جالب گراف نا جا به جایی را بررسی می کنیم و سپس به بررسی دو حدس زیر می پردازیم. 1. فرض کنید g و hگروه های متناهی باشند. اگر (g)??(h)?، آنگاه |g|=|h|. 2. فرض کنید gیک گروه ساده غیر آبلی متناهی باشد و hگروهی باشد که (g)??(h)?، آنگاه g?h.
منابع مشابه
مطالعه برخی ویژگی های گرافهای ناجابجایی وابسته به گروههای متناهی ناآبلی
برای یک گروه ناآبلی متناهی، گراف ناجابجایی وابسته به آن به این شکل تعریف میشود که راسهای آن تمام عناصر غیرمرکزی گروه میباشد و دو راس بوسیله یک یال به یکدیگر وصل می شوند اگر و فقط اگر با عمل گروه با یکدیگر جابجا نشوند. در این پایان نامه نشان داده ایم که در صورتی که دو گروه ناآبلی پوچتوان با گرافهای ناجابجایی یکریخت نامنظم،مرتبه یکسان دارند. همچنین نشان می دهیم که اگر گراف ناجابجایی وابسته به یک ...
شناسایی گروههای ساده متناهی توسط گراف اول وابسته به آنها
به گروه متناهی g یک گراف ساده موسوم به گراف اول وابسته می شود که آن رابا ?(g می دهیم. در این گراف مجموعه رئوس عبارت است از ?(g یعنی مجموعه اعداد اول شمارنده |g| و دو رأس p و q به هم وصلند هرگاه گروه g عضوی از مرتبه pq داشته باشد. گروه معین g را r-بار شناسایی پذیر به وسیله گراف اول گوییم هرگاه دقیقا r گروه غیریکریخت مانند h وجود داشته باشد به طوری که ?(h)=?(g . در حالت خاص وقتی یک گروه توسط گر...
15 صفحه اولتعمیمی از گرافهای اول گروههای متناهی
گراف حلپذیر وابسته به یک گروه ساده متناهی، تعمیمی از گراف اول گروههای ساده متناهی میباشد. در واقع در گراف حلپذیر گروه g، مجموعه راس عبارتست از شمارنده های اول مرتبه گروه g،و دو راس مانند p و q زمانی توسط یک یال به یکدیگر وصل میباشند که g دارای زیرگروه حلپذیری مانند h باشد به طوری که مرتبه h توسط p و q عاد شود. در این پایان نامه نشان داده ایم که گراف حلپذیر در گروه ساده متناهی، همواره گرافی همبن...
سرشت نمایی گروههای ساده ی متناهی توسط گراف ناجابجایی وابسته به آن ها
مطالعه ی ساختارهای جبری با استفاده از ویژگیهای گراف، موضوع پژوهشی جالبی در چند دهه ی گذشته بوده است. در این سالها مقالات زیادی چاپ شده است که در آن ها به یک گروه یا یک حلقه (یا در حالت کلی یک ساختار جبری ) یک گراف وابسته شده است. یکی از گرافهای معروف وابسته به یک گروه عبارت است از گراف ناجابجایی که به این صورت تعریف می شود: رئوس این گراف عبارتند از اعضای مجموعه ی اعضای غیرمرکزی و دو رأس مانند x...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده ریاضی و کامپیوتر خوانسار
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023